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Phyllotaxis: Its geometry and dynamics
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We have found a relation between the irrational divergence angles and the number of spirals based on the
properties of the generalized Fibonacci numbers. Our numerical simulation shows that the patterns of the spiral
phyllotaxis depend mainly on the initial growing speed of the primof#4.063-651X98)04504-§

PACS numbd(s): 87.10+¢€, 05.45+b

[. INTRODUCTION the plastochrone ratid 5], to describe the successive appear-
ance of new primordia. The position of a new primordium is
Phyllotaxis has been known for a long time, and is ofdetermined by the requirement that the total energy of the
interest to botanists and mathematicians as well as physicisgystem is the lowest. They found that an explicit form of the
(See Ref[1] for an updated review It deals with arrange- €nergy law is not necessary as long as it is repulsive. The
ments of plant organs such as leaves, bracts, branches, petdRguirement is a realization of the inhibitor mechanism sug-
and florets, callegprimordia in their young stages. Among 9gested by Schout], and discussed in detail by Mitchison
all the phyllotactic patterns, the most common one is thd./]- We perform a numerical simulation, and show that it is
spiral pattern. The primordium appears one at a time near thif initial value ofg that determines the number of paras-
growing centexapey, and grows outward. One can trace thetichies. Under the assumption that all initial valuesgohre

primordia according to their order of appearance with a Spi__equally favored, the relative frequencies of patterns observed

ral calledgenetic spiral However, a human’s eye is attracted L?Oﬁlants can also be explained by the resulis of our simula-
to the conspicuous spirals that link each primordium to each We will first prove a simple theorem in Sec. II. and then
nearest spatial neighbor. Two sets of conspicuous spiral&s P P )

(calledparastichie$ run in opposite directions and cross one e the theorem in Sec. lll to determine the divergence angle
another. The most striking feature is that the numbers o f any pattern with a parastichy pair. The dynamics of the

arastichies in the opposed set are nearlv alwavs tWo co ormation of the parastichies is described in Sec. IV. Section
P PP y away is the conclusion.

secutive numbers of the Fibonacci series. Furthermore, the
angles relative to the apex between two successive primordia
on the genetic spiral, called the divergence angles, are all Il. A MATHEMATICAL THEOREM
close to the golden angled=(1-7)X360°~137.5°, : :
wherer=(\/5—1)/2 is the golden mean. The Fibonacci numbers8] F,

In Fig. 1 we show a picture of a sunflower. Two sets of
parastichies are clearly seen. There are 34 clockwise spirals
and 21 counterclockwise spirals. The primordia can be la- . .
beled by its order of appearance on the genetic spiral. Pr2r® defined by the relation
mordia labeled 189 and 190 are indicated by small dots in
Fig. 1. The divergence angle of these two primordia is very
close to the golden angi®.

There have been many works on reconstructing the spiral
pattern based on the observed fd@F Most of them focus
on the Fibonacci series and the golden angle. However, spi-
ral patterns with numbers of parastichies different from the
Fibonacci numbers are also observed in plasee text be-
low). In this paper we address two questions: First, is there a
definite relation between the divergence angles and the
parastichy numbers? Second, what is the origin of these pat-
terns? In particular, why is a particular pattern preferred over
the others? The first question was investigated rigorously by
Jean[3]. In this paper we derive an alternative formula that

relates the divergence angle to the numbers of parastichies riG. 1. The sunflower has two sets of conspicuous parastichies.
based on the properties of the generalized Fibonacci numbet$ie numbers of parastichies are 21 and 34, which are two consecu-
(defined below. For the second question, we adopt thetive numbers in the Fibonacci series. The divergence angle of two
model of Douady and Coud4]. They introduced a dimen- consecutive primordia on the genetic spiral is close to the golden
sionless parametey, which is equivalent to the logarithm of angle.

1,1,2,3,5,8,13,21,34,55. . 1)
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Fr=Fn-1tFno2, 2

and the beginning two numbefs =1 andF,=1. Two iden-

tities we need below foF,,, which can be easily proved by ‘
induction, are .
< e

Frno1Fns1—Fa=(=1)", (3)

Fn+1Fn72_FnFn71:(_1)n+l- (4)

. . . FIG. 2. The conspicuous parastichy pair for a given plasto-
Using the properties of Farey numbém [the Farey series chrone ratio. The closest neighbors of the primordiutni + j are

of orderN, F(N), is the ascending series of irreducible frac- , , ; andn+j.
tions between 0 and 1 whose denominators do not exceed
N. The basic property of Farey series is thathik and
h'/k’ are consecutive terms iA(N), then|kh’—k’h|=1),  Using Eqs.(7), (3), and(4), we have

identities (2) and (3) are equivalent to the following state- 1G(p,q,n+1)G(a,a+b,n—1)—G(p,q,n)G(a,a+b,n)|

ment:
=(=1)"(pa—qgb).
Fn—z I:n I:n—l . i . .
" F, Thus EQq.(8) is satisfied if and only if
lpa—gb|=1, ©)
Q.E.D.

Fao1' Fnes
are consecutive terms aof(n+1).

One can define the generalized Fibonacci numbers
G(p,q,n), by Eq.(2), with the beginning two numbers being Ill. RELATION BETWEEN THE DIVERGENCE ANGLES

p andq: AND THE PARASTICHY NUMBERS
G(p,q,n)=G(p,q,n—1)+G(p,q,n—2), As a plant grows, the plastochrone ratio decred3es
The conspicuous parastichy numbers follow the Fibonacci
G(p,g9,1)=p, (5)  rule [7], namely, the numbers of parastichy pairjj (as-
sumingi<j) make a transition to numberg,{(+j). This
G(p,q,2) =q. can be seen from Figs. 2 and 3. We use a black dot to rep-

resent a primordium, and label it by a number showing its
Obviously, F,=G(1,1n) and G(1,3n) are known to be a order of appearance. Assume the number of clockwise paras-
Lucas series. Equatiofb) can be solved to give an explicit tichies isi, and the number of counterclockwise parastichies
expression foiG(p,q,n): is j. We can assume<j without loss of generality. It is
obvious that along each one of the clockwiseunterclock-
1 J5+1\" [(1-B\" wise) parastichies, the labels of primordia differ ;).
G(p.a.n)=—+= - p
J5 2
J5+1
2

2 When the parastichy numbers arigj§, the primordiumn
+i+] is closest ton+i andn+j (Fig. 2. Wheng de-
creases, the distance betwaeni+j andn is shortened by

a=p), a large amount, so that the primordium i+ j is now clos-
est ton and n+j instead(Fig. 3). Thus the conspicuous

(6)  parastichy numbeir changes td +j.
On the other hand, the parastichy numbers can also be
contracted wherg increases using the reverse rulg;i(
G(p,q,n)=pF,+(q—p)F_1=pFy »+qF, 1. (7) +j)—(@,)), or equivalently,.(,j)e(j fi,j). Thus the num-
bers of the right and left spirals are in general two consecu-

Using Egs.(3), (4), and (5), one can prove the following tive numbers in the generalized Fibonacci se@®,q,n).

theorem.

+

g

G(p,q,n) can be related té&, by

Theorem

[G(a,a+b,n—1)/G(p,q,n)] and [G(a,a+b,n)/
G(p,q,n+1)] are two consecutive Farey humbersZN)
for G(p,q,n+1)<N<G(p,q,n+2) if and only if p/q and
b/a are consecutive itF(M) for max@,a)=M<q+a.
Proof: Based on the basic property of Farey series, we need
only to show

|G(p,g,n+1)G(a,a+b,n—1) FIG. 3. The conspicuous parastichy pair for a smaller plasto-
chrone ratio than that in Fig. 2. The closest neighbors of the pri-
-G(p,q,n)G(a,a+b,n)|=1. (8)  mordiumn+i+j aren andn+j.
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TABLE I. Divergence angles of some common parastichies. 2007 L LA
Divergence angle
Parastichies (degrees
[p.q] ¢ ,
[1,1] 137.508
[1,2] 137.508
[1,3] 99.502
[1,4] 77.955
[2,5] 151.136 L
[3,8] 132.178 i
0 1 I 1 1

0.00 0.05 c.10 0.15 0.20 0.25

With two opposed spirals, the angle of the primordium >

n+i+j has to be between the angles of primondiai and FIG. 4. The divergence anglém degreesof different initial g
n+j. Assume the divergence angle of parastichias,ihhen  with a decreasing rate 0.000 25 per primordium.
the condition

[i¢]<0<[j¢] (108  parastichy numbers which are two consecutive terms of the
generalized Fibonacci seri€(p,q,n). In Table | and what
or follows, the seriesG(p,q,n) is simply denoted by p,q].
. : 2[p,q], 3[p,q] denote cases in which there are two and
Li¢1<0<li¢] (100 three sets of parastichy pairs, respectively.

has to be satisfied, whefs] is defined as the difference  Multiplying the divergence anglé by p andq, respec-

betweens¢ and its closest integese): tively, using Eq.(9), we have
[sp]=Sd—(Sp). (12) D= pa+pb7-:(qbt1)+pbr:b+ 1 (16
q+pT q+pT -~ qtpT’

Now i andj are in general two consecutive generalized Fi-
bonacci numbers, say=G(p,q,n) and j=G(p,q,n+1). gat+qbr qa+(paxl)r T
When g decreases, relatio(®) has to be satisfied, while 9="gipr = qrpr  gepr 17
andj make a transition to a larger.

Define the anglep, as Thusa andb are the closest integers pt» andqe¢, namely,

a=(p¢) andb=(q¢). We obtain the alternative formula of
_G(aatb,n) +(=1)" (12  Ea.(19) for 4 given by Jearf3]:
" G(p,q,n+1) "
_(pp)+(ae)7

with &, a very small positive numbers,<1/G(p,q,2n = T qipr (18

+2), and converges to 0 as—«. a andb are determined
by Eqg.(9). Use the theorem, in particular E@), we have  Jean’s formuldEq. (18)] is neat because it determines the
(—1)n divergence angl@ using the parastichy numbers only, with-
. __\= L(—1)n out introducing other integers such asandb in Eq. (15).
Li én] G(p,q,n+1) (=D%enG(p.ain), - (13 But, in practice, it is not clear how one can calculétérom

[j¢n]:(—1)"8nG(p,q,n+1) (14 200 7 —— , —

satisfying Eq.(10). Take the limithn—o, we obtain the di-
vergence angle,

b= lim =i G(a,a+b,n)
=lim ¢,=lm ———
o now G(PONT1)

. aF, ,+(a+tb)F,.; (a+tb)+ar a+tbr

= lim = = .
noe  PFa_1tdF, p+a/r  qtpr
(15)

Note that for a giverp andgq, if a andb satisfy Eq.(9), then 0.00 o0 oo T T e oz oas
kg*xa andkp=xb, kel, also satisfy Eq(9) and produce the &
same divergence anglg (except the sign. FIG. 5. The divergence angl¢im degreesof different initial g

In Table | we list the divergence angles of some commorwith a decreasing rate 0.000 10 per primordium.
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Eq. (18), since ¢ also appears in a very particular form on  TABLE Il. Data for eight patterns and 12 750 observations on
the right-hand side of the formula. Jef8] introduced an more than 650 species.
algorithm to calculatep based on Eq(18). In our formula

[Eg. (15)], the auxiliary integers andb introduced through Pattern Frequency %
Eq. (9) are easily determined, since the numhem@ndq are [1.2] 11 641 913
normally small integers. One can therefore calculate the di- 2[’1 7] 666 592
vergence angle based on Ed5) very easily. [1’3’,] 190 15

[1,4] 17

[1,5] 38

IV. ROLE OF THE PLASTOCHRONE RATIO [1,6] 32

[1,7] 25

We have shown that once the pattern of an opposed paras- o

tichies appears, the divergence angle is uniquely determined [2.5]

by a self-organized manner. The next question is how doesa

plant choose its parastichy numbers. Have they been set in

the genetic code? Or do they form according to the environ- The results are consistent with the observation of the fre-

mental situation? Douady and Coudét introduced a model quencies of the spiral patterns in plants. Jé@hcollected

in which a single parametey, which might be due to genet- 12 750 observations on more than 650 species, as shown in

ics or environment, determines the parastichy numbers by &able Il. Our results of numerical simulation indeed show

dynamical process. We follow this point of view. that patter1,2] is the most likely to occur if plants choose
When a p|ant growsy decreases and eventua”y goes tothe initial g randomly. The second and third most possible

zero. There are in fact two factors to be considered. One igatterns ar¢l,3] and 21,2], which are consistent with Table

the initial value ofg and the other the decreasing rategof Il except that the order is reversed. Two pattef8s8] and

The former might be inherited from the gene, while the latter3[1,2] that appear in our simulation are not included in Table

could be mostly due to environmental effects. We find thatl. These patterns have actually been repofte@. Pattern

the initial value ofg is crucial in determining the parastichy [3,8] was claimed by Jean to be a problematic pattern based

numbers and hence the divergence angle. on the model using the principle of minimal entropy produc-
Our simulation is based on the model of Douady andtion[11]. According to the model of Douady and Couder and

Couder[4]_ Each primordium appears |n|t|a||y on a small the results of our numerical simulation, the pattern has a

circle centered at the origin. After its appearance, it is giverfmall probability to appear when the initial growing speed of

a radial motion with a velocity proportional to its distance to the primordia is very small.

the center. The place of birth of a primordium is determined

by the condition of lowest total energy. We take the energy

law to be 162, whered is the distance between two primor-

dia. The results are qualitatively the same for several other V. CONCLUSION

repulsive energy laws. For a given decreasing ratg, ofie

scan the initialg from 0 to 1 with step 0.001, and record its

final parastichy numbers ag—0. (We have also recorded

the divergence angles to make sure that the parastichy nu

bers and the divergence angles are consistent according

Table I)

In conclusion, we have found a relation between the
parastichy numbers and the divergence angles. Once a paras-
tichy pair appears, the number of parastichies changes ac-

ording to the Fabonnaci rule, thus leading to a definite lim-
i(?ng divergence angle. Based on the model of Douady and
We plot the di | initialfor two d _ Couder, our numericgl simu!ation shows that the appearance
: € plot tne divergence angle vs Initiglior two decreas- ¢ 5 particular parastichy pair depends strongly on the initial
N9 rates, 0.000 25 and O'QOO 10, in Figs. 4. and 5, ieSpecg'rowing speed of the plant characterized by a single param-
tively. For go>0.21, the d|vergenc_e angle IS 1.37'5 ' theeterg. The relative frequencies of various spiral patterns
golde_n angle, and .the lcorresp_ond|r_19 parastichies are CO™bllected from the observations on many species are roughly
secutive numbers in Fibonacci serifg. (1)]. For 0.11 .consistent with the results of our numerical simulation. Of

<EO< 0.21, _the Earastlch:?s ak:e tv;/)olclonseCUtl}/e numbl_ersd”aourse, there are other phyllotactic patterns that are needed to
a Lucas series. Fay, smaller than 0.11, several generalizedy,, ., estigated using the still unknown properties of the

Fibonacci series appear interwined. In Fig. 4, the regign  p1ants n particular, there is no convincing explanation for

<0.04 is not .shown because with its decreasing ratgnq \whorled patterngl2]. Douady and Coudd¥] suggested
0.000 25, the divergence angle does not converge 10 a P, adding a criterion of minimal total energy as a threshold
ticular value. In Fig. 5, where the decreasing rate is 0.000 1G, giving birth to a new leaf in the numerical simulation

a definite pattern can still be seen for 0:0§,<<0.04. In  \4,iq lead to the appearance of whorled patterns. Work
general, more structure can be revealed by using a small%qong this line is under investigation.

decreasing rate fay.

For all the values 0fj,>0.04 we scanned, there are no
other patterns except,2], [1,3], [1,4], [2,5], 2[1,2], 2[1,3],
and 31,2]. One more patterri3,8], appears when the initial ACKNOWLEDGMENT
g is smaller, 0.03gy<<0.04. We expect more patterns than  This work is supported in part by the National Science
we have plotted in Figs. 4 and 5, such[asb], [1,6], 21,4], Council of the Republic of China under Grant Contract No.
etc., in the regiorgy<<0.03. NSC 87-2112-M005-008.
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