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Phyllotaxis: Its geometry and dynamics

Sy-Sang Liaw
Department of Physics, National Chun-Hsing University, Taichung, Taiwan 40227, Republic of China

~Received 25 July 1997; revised manuscript received 1 December 1997!

We have found a relation between the irrational divergence angles and the number of spirals based on the
properties of the generalized Fibonacci numbers. Our numerical simulation shows that the patterns of the spiral
phyllotaxis depend mainly on the initial growing speed of the primordia.@S1063-651X~98!04504-8#

PACS number~s!: 87.10.1e, 05.45.1b
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I. INTRODUCTION

Phyllotaxis has been known for a long time, and is
interest to botanists and mathematicians as well as physi
~See Ref.@1# for an updated review!. It deals with arrange-
ments of plant organs such as leaves, bracts, branches, p
and florets, calledprimordia in their young stages. Among
all the phyllotactic patterns, the most common one is
spiral pattern. The primordium appears one at a time nea
growing center~apex!, and grows outward. One can trace t
primordia according to their order of appearance with a s
ral calledgenetic spiral. However, a human’s eye is attracte
to the conspicuous spirals that link each primordium to e
nearest spatial neighbor. Two sets of conspicuous sp
~calledparastichies! run in opposite directions and cross o
another. The most striking feature is that the numbers
parastichies in the opposed set are nearly always two
secutive numbers of the Fibonacci series. Furthermore,
angles relative to the apex between two successive primo
on the genetic spiral, called the divergence angles, are
close to the golden angle,F5(12t)3360°'137.5°,
wheret5(A521)/2 is the golden mean.

In Fig. 1 we show a picture of a sunflower. Two sets
parastichies are clearly seen. There are 34 clockwise sp
and 21 counterclockwise spirals. The primordia can be
beled by its order of appearance on the genetic spiral.
mordia labeled 189 and 190 are indicated by small dots
Fig. 1. The divergence angle of these two primordia is v
close to the golden angleF.

There have been many works on reconstructing the sp
pattern based on the observed facts@2#. Most of them focus
on the Fibonacci series and the golden angle. However,
ral patterns with numbers of parastichies different from
Fibonacci numbers are also observed in plants~see text be-
low!. In this paper we address two questions: First, is the
definite relation between the divergence angles and
parastichy numbers? Second, what is the origin of these
terns? In particular, why is a particular pattern preferred o
the others? The first question was investigated rigorously
Jean@3#. In this paper we derive an alternative formula th
relates the divergence angle to the numbers of parastic
based on the properties of the generalized Fibonacci num
~defined below!. For the second question, we adopt t
model of Douady and Couder@4#. They introduced a dimen
sionless parameterg, which is equivalent to the logarithm o
571063-651X/98/57~4!/4589~5!/$15.00
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theplastochrone ratio@5#, to describe the successive appe
ance of new primordia. The position of a new primordium
determined by the requirement that the total energy of
system is the lowest. They found that an explicit form of t
energy law is not necessary as long as it is repulsive.
requirement is a realization of the inhibitor mechanism s
gested by Schoute@6#, and discussed in detail by Mitchiso
@7#. We perform a numerical simulation, and show that it
the initial value ofg that determines the number of para
tichies. Under the assumption that all initial values ofg are
equally favored, the relative frequencies of patterns obser
in plants can also be explained by the results of our simu
tion.

We will first prove a simple theorem in Sec. II, and the
use the theorem in Sec. III to determine the divergence an
of any pattern with a parastichy pair. The dynamics of t
formation of the parastichies is described in Sec. IV. Sect
V is the conclusion.

II. A MATHEMATICAL THEOREM

The Fibonacci numbers@8# Fn

1,1,2,3,5,8,13,21,34,55, . . . ~1!

are defined by the relation

FIG. 1. The sunflower has two sets of conspicuous parastich
The numbers of parastichies are 21 and 34, which are two cons
tive numbers in the Fibonacci series. The divergence angle of
consecutive primordia on the genetic spiral is close to the gol
angle.
4589 © 1998 The American Physical Society
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Fn5Fn211Fn22 , ~2!

and the beginning two numbersF151 andF251. Two iden-
tities we need below forFn , which can be easily proved b
induction, are

Fn21Fn112Fn
25~21!n, ~3!

Fn11Fn222FnFn215~21!n11. ~4!

Using the properties of Farey numbers@7# @the Farey series
of orderN, F(N), is the ascending series of irreducible fra
tions between 0 and 1 whose denominators do not exc
N. The basic property of Farey series is that ifh/k and
h8/k8 are consecutive terms inF(N), then ukh82k8hu51!,
identities ~2! and ~3! are equivalent to the following state
ment:

Fn22

Fn21
,

Fn

Fn11
,

Fn21

Fn

are consecutive terms ofF~n11!.

One can define the generalized Fibonacci numb
G(p,q,n), by Eq.~2!, with the beginning two numbers bein
p andq:

G~p,q,n!5G~p,q,n21!1G~p,q,n22!,

G~p,q,1!5p, ~5!

G~p,q,2!5q.

Obviously, Fn5G(1,1,n) and G(1,3,n) are known to be a
Lucas series. Equation~5! can be solved to give an explic
expression forG(p,q,n):

G~p,q,n!5
1

A5
H F SA511

2 D n

2S 12A5

2 D nGp

1F SA511

2 D n21

2S 12A5

2 D n21G~q2p!J ,

~6!

G(p,q,n) can be related toFn by

G~p,q,n!5pFn1~q2p!Fn215pFn221qFn21 . ~7!

Using Eqs.~3!, ~4!, and ~5!, one can prove the following
theorem.

Theorem

@G(a,a1b,n21)/G(p,q,n)# and @G(a,a1b,n)/
G(p,q,n11)# are two consecutive Farey numbers inF(N)
for G(p,q,n11)<N,G(p,q,n12) if and only if p/q and
b/a are consecutive inF(M ) for max(q,a)<M,q1a.
Proof: Based on the basic property of Farey series, we n
only to show

uG~p,q,n11!G~a,a1b,n21!

2G~p,q,n!G~a,a1b,n!u51. ~8!
ed

rs

d

Using Eqs.~7!, ~3!, and~4!, we have

uG~p,q,n11!G~a,a1b,n21!2G~p,q,n!G~a,a1b,n!u

5~21!n~pa2qb!.

Thus Eq.~8! is satisfied if and only if

upa2qbu51, ~9!

Q.E.D.

III. RELATION BETWEEN THE DIVERGENCE ANGLES
AND THE PARASTICHY NUMBERS

As a plant grows, the plastochrone ratio decreases@7#.
The conspicuous parastichy numbers follow the Fibona
rule @7#, namely, the numbers of parastichy pair (i , j ) ~as-
suming i , j ! make a transition to numbers (j ,i 1 j ). This
can be seen from Figs. 2 and 3. We use a black dot to
resent a primordium, and label it by a number showing
order of appearance. Assume the number of clockwise pa
tichies isi , and the number of counterclockwise parastich
is j . We can assumei , j without loss of generality. It is
obvious that along each one of the clockwise~counterclock-
wise! parastichies, the labels of primordia differ byi ( j ).
When the parastichy numbers are (i , j ), the primordiumn
1 i 1 j is closest ton1 i and n1 j ~Fig. 2!. When g de-
creases, the distance betweenn1 i 1 j andn is shortened by
a large amount, so that the primordiumn1 i 1 j is now clos-
est to n and n1 j instead~Fig. 3!. Thus the conspicuous
parastichy numberi changes toi 1 j .

On the other hand, the parastichy numbers can also
contracted wheng increases using the reverse rule: (j ,i
1 j )→( i , j ), or equivalently, (i , j )→( j 2 i , j ). Thus the num-
bers of the right and left spirals are in general two conse
tive numbers in the generalized Fibonacci seriesG(p,q,n).

FIG. 2. The conspicuous parastichy pair for a given plas
chrone ratio. The closest neighbors of the primordiumn1 i 1 j are
n1 i andn1 j .

FIG. 3. The conspicuous parastichy pair for a smaller plas
chrone ratio than that in Fig. 2. The closest neighbors of the
mordiumn1 i 1 j aren andn1 j .
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With two opposed spirals, the angle of the primordiu
n1 i 1 j has to be between the angles of primordian1 i and
n1 j . Assume the divergence angle of parastichies isf, then
the condition

@ if#,0,@ j f# ~10a!

or

@ j f#,0,@ if# ~10b!

has to be satisfied, where@sf# is defined as the differenc
betweensf and its closest integer (sf):

@sf#5sf2~sf!. ~11!

Now i and j are in general two consecutive generalized
bonacci numbers, sayi 5G(p,q,n) and j 5G(p,q,n11).
When g decreases, relation~9! has to be satisfied, whilei
and j make a transition to a largern.

Define the anglefn as

fn5
G~a,a1b,n!

G~p,q,n11!
1~21!n«n , ~12!

with «n a very small positive number,«n,1/G(p,q,2n
12), and converges to 0 asn→`. a andb are determined
by Eq. ~9!. Use the theorem, in particular Eq.~8!, we have

@ ifn#5
~21!n11

G~p,q,n11!
1~21!n«nG~p,q,n!, ~13!

@ j fn#5~21!n«nG~p,q,n11! ~14!

satisfying Eq.~10!. Take the limitn→`, we obtain the di-
vergence anglef,

f5 lim
n→`

fn5 lim
n→`

G~a,a1b,n!

G~p,q,n11!

5 lim
n→`

aFn221~a1b!Fn21

pFn211qFn
5

~a1b!1at

p1q/t
5

a1bt

q1pt
.

~15!

Note that for a givenp andq, if a andb satisfy Eq.~9!, then
kq6a andkp6b, kPI , also satisfy Eq.~9! and produce the
same divergence anglef ~except the sign.!

In Table I we list the divergence angles of some comm

TABLE I. Divergence angles of some common parastichies

Parastichies
@p,q#

Divergence angle
~degrees!

f

@1,1# 137.508
@1,2# 137.508
@1,3# 99.502
@1,4# 77.955
@2,5# 151.136
@3,8# 132.178
-

n

parastichy numbers which are two consecutive terms of
generalized Fibonacci seriesG(p,q,n). In Table I and what
follows, the seriesG(p,q,n) is simply denoted by@p,q#.
2@p,q#, 3@p,q# denote cases in which there are two a
three sets of parastichy pairs, respectively.

Multiplying the divergence anglef by p and q, respec-
tively, using Eq.~9!, we have

pf5
pa1pbt

q1pt
5

~qb61!1pbt

q1pt
5b6

1

q1pt
, ~16!

qf5
qa1qbt

q1pt
5

qa1~pa61!t

q1pt
5a6

t

q1pt
. ~17!

Thusa andb are the closest integers ofpf andqf, namely,
a5(pf) andb5(qf). We obtain the alternative formula o
Eq. ~15! for f given by Jean@3#:

f5
~pf!1~qf!t

q1pt
. ~18!

Jean’s formula@Eq. ~18!# is neat because it determines th
divergence anglef using the parastichy numbers only, with
out introducing other integers such asa and b in Eq. ~15!.
But, in practice, it is not clear how one can calculatef from

FIG. 4. The divergence angles~in degrees! of different initial g
with a decreasing rate 0.000 25 per primordium.

FIG. 5. The divergence angles~in degrees! of different initial g
with a decreasing rate 0.000 10 per primordium.
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Eq. ~18!, sincef also appears in a very particular form o
the right-hand side of the formula. Jean@3# introduced an
algorithm to calculatef based on Eq.~18!. In our formula
@Eq. ~15!#, the auxiliary integersa andb introduced through
Eq. ~9! are easily determined, since the numbersp andq are
normally small integers. One can therefore calculate the
vergence angle based on Eq.~15! very easily.

IV. ROLE OF THE PLASTOCHRONE RATIO

We have shown that once the pattern of an opposed pa
tichies appears, the divergence angle is uniquely determ
by a self-organized manner. The next question is how do
plant choose its parastichy numbers. Have they been s
the genetic code? Or do they form according to the envir
mental situation? Douady and Couder@4# introduced a mode
in which a single parameterg, which might be due to genet
ics or environment, determines the parastichy numbers b
dynamical process. We follow this point of view.

When a plant grows,g decreases and eventually goes
zero. There are in fact two factors to be considered. On
the initial value ofg and the other the decreasing rate ofg.
The former might be inherited from the gene, while the lat
could be mostly due to environmental effects. We find t
the initial value ofg is crucial in determining the parastich
numbers and hence the divergence angle.

Our simulation is based on the model of Douady a
Couder @4#. Each primordium appears initially on a sma
circle centered at the origin. After its appearance, it is giv
a radial motion with a velocity proportional to its distance
the center. The place of birth of a primordium is determin
by the condition of lowest total energy. We take the ene
law to be 1/d3, whered is the distance between two primo
dia. The results are qualitatively the same for several o
repulsive energy laws. For a given decreasing rate ofg, we
scan the initialg from 0 to 1 with step 0.001, and record i
final parastichy numbers asg→0. ~We have also recorde
the divergence angles to make sure that the parastichy n
bers and the divergence angles are consistent accordin
Table I.!

We plot the divergence angle vs initialg for two decreas-
ing rates, 0.000 25 and 0.000 10, in Figs. 4 and 5, resp
tively. For g0.0.21, the divergence angle is 137.5°, t
golden angle, and the corresponding parastichies are
secutive numbers in Fibonacci series@Eq. ~1!#. For 0.11
,g0,0.21, the parastichies are two consecutive number
a Lucas series. Forg0 smaller than 0.11, several generaliz
Fibonacci series appear interwined. In Fig. 4, the regiong0
,0.04 is not shown because with its decreasing r
0.000 25, the divergence angle does not converge to a
ticular value. In Fig. 5, where the decreasing rate is 0.000
a definite pattern can still be seen for 0.03,g0,0.04. In
general, more structure can be revealed by using a sm
decreasing rate forg.

For all the values ofg0.0.04 we scanned, there are n
other patterns except@1,2#, @1,3#, @1,4#, @2,5#, 2@1,2#, 2@1,3#,
and 3@1,2#. One more pattern,@3,8#, appears when the initia
g is smaller, 0.03,g0,0.04. We expect more patterns tha
we have plotted in Figs. 4 and 5, such as@1,5#, @1,6#, 2@1,4#,
etc., in the regiong0,0.03.
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The results are consistent with the observation of the
quencies of the spiral patterns in plants. Jean@9# collected
12 750 observations on more than 650 species, as show
Table II. Our results of numerical simulation indeed sho
that pattern@1,2# is the most likely to occur if plants choos
the initial g randomly. The second and third most possib
patterns are@1,3# and 2@1,2#, which are consistent with Table
II except that the order is reversed. Two patterns@3,8# and
3@1,2# that appear in our simulation are not included in Tab
II. These patterns have actually been reported@10#. Pattern
@3,8# was claimed by Jean to be a problematic pattern ba
on the model using the principle of minimal entropy produ
tion @11#. According to the model of Douady and Couder a
the results of our numerical simulation, the pattern ha
small probability to appear when the initial growing speed
the primordia is very small.

V. CONCLUSION

In conclusion, we have found a relation between t
parastichy numbers and the divergence angles. Once a p
tichy pair appears, the number of parastichies changes
cording to the Fabonnaci rule, thus leading to a definite li
iting divergence angle. Based on the model of Douady a
Couder, our numerical simulation shows that the appeara
of a particular parastichy pair depends strongly on the ini
growing speed of the plant characterized by a single par
eter g. The relative frequencies of various spiral patter
collected from the observations on many species are rou
consistent with the results of our numerical simulation.
course, there are other phyllotactic patterns that are need
be investigated using the still unknown properties of t
plants. In particular, there is no convincing explanation
the whorled patterns@12#. Douady and Couder@4# suggested
that adding a criterion of minimal total energy as a thresh
for giving birth to a new leaf in the numerical simulatio
would lead to the appearance of whorled patterns. W
along this line is under investigation.
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TABLE II. Data for eight patterns and 12 750 observations
more than 650 species.

Pattern Frequency %

@1,2# 11 641 91.3
2@1,2# 666 5.2
@1,3# 190 1.5
@1,4# 17
@1,5# 38
@1,6# 32
@1,7# 25
@2,5# 22
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